如图11-1,有一座抛物线型拱桥,涨潮时桥内水面宽AB为8米,落潮时水位下降5米,桥内水面宽CD为12米. (1)建立适当的平面直角坐标系,并求此抛物线的解析式;(2)如图11-2,某种货船在水面上的部分的横截面是梯形EFGH,且HE=FG,EF= HE,∠GHE=45°.试问落潮时,能顺利通过拱桥的这种货船在水面上的部分最大高度是多少?
如图,在△ACB中,∠ACB=90°,CD⊥AB于D. (1)求证:∠ACD=∠B; (2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.
已知等腰三角形的周长是24 cm,一腰上的中线把三角形分成两个三角形,两个三角形的周长的差是3 cm.求等腰三角形各边的长.
在△ABC中,∠A=∠C=∠ABC,BD是∠ABC的平分线,求∠A及∠BDC的度数.
如图,△ABC中,BD是∠ABC的角平分线,DE∥BC交AB于E,∠A=60°,∠BDC=95°,求△BDE各内角的度数.
如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.若∠B=35°,∠E=20°,求∠BAC的度数.