如图,在矩形 ABCD 中, AB = 12 , AC = 20 ,两条对角线相交于点 O .以 OB , OC 为邻边作第 1 个平行四边形 OB B 1 C ,对角线相交于点 A 1 ;再以 A 1 B 1 , A 1 C 为邻边作第 2 个平行四边形 A 1 B 1 C 1 C ,对角线相交于点 O 1 ;再以 O 1 B 1 , O 1 C 1 为邻边作第 3 个平行四边形 O 1 B 1 B 2 C 1 ;…,依此类推.
(1)求矩形 ABCD 的面积;
(2)求第 1 个平行四边形 OB B 1 C 、第 2 个平行四边形 A 1 B 1 C 1 C 和第 6 个平行四边形的面积.
先化简,再求值:,其中x=2.
(1)计算:;(2)解方程:.
如图,已知点A(0,4),B(2,0).(1)求直线AB的函数解析式;(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+n与线段OA交于点C.①求线段AC的长;(用含m的式子表示)②是否存在某一时刻,使得△ACM与△AMO相似?若存在,求出此时m的值.
在矩形ABCD中,点E在BC边上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、FG、GB.设.(1)证明:△BGF是等腰三角形;(2)当k为何值时,△BGF是等边三角形?(3)我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.事实上,在一个三角形中,较大的边所对的角也较大;反之也成立.利用上述结论,探究:当△BGF分别为锐角、直角、钝角三角形时,k的取值范围.
2013年6月11日,“神舟”十号载人航天飞船发射成功!如图,飞船完成变轨后,就在离地球(⊙O)表面约350km的圆形轨道上运行.当飞船运行到某地(P点)的正上方(F点)时,从飞船上能看到地球表面最远的点Q(FQ是⊙O的切线).已知地球的半径约为6 400km.求:(1)∠QFO的度数;(结果精确到0.01°)(2)地面上P,Q两点间的距离(PQ的长).(π取3.142,结果保留整数)