在等腰梯形 ABCD 中, AB = DC = 5 , AD = 4 , BC = 10 ,点 E 在下底边 BC 上,点 F 在腰 AB 上.
(1)若 EF 平分等腰梯形 ABCD 的周长,设 BE 长为 x ,试用含 x 的代数式表示 △ BEF 的面积;
(2)是否存在线段 EF 将等腰梯形 ABCD 的周长和面积同时平分?若存在,求出此时 BE 的长;若不存在,请说明理由;
(3)是否存在线段 EF 将等腰梯形 ABCD 的周长和面积同时分成 1 : 2 的两部分?若存在,求出此时 BE 的长;若不存在,请说明理由.
如图所示,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,求△DBE的周长.
如图,OC是∠AOB的角平分线,P是OC上一点,PE⊥OA交OA于E,PF⊥OB 交OB于F,Q是OC上的另一点,连接QE,QF.求证:QE=QF.
如图,已知CD⊥AB于D,BE⊥AC于E,CD交BE于点O. ①若OC=OB,求证:点O在∠BAC的平分线上.(提示:连接AO) ②若点O在∠BAC的平分线上,求证:OC=OB.
如图,在△ABC中,AD平分∠BAC,AB=6,AC=4,△ABD的面积等于9. 求:△ADC的面积.
如图,已知∠ADC=∠ABC,DE、BF分别平分∠ADC和∠ABC,且∠1=∠2,试说明AB∥DC的理由.