如图所示, △ ABC 中, AB = AC ,过点 B 作 △ ABC 的外接圆的切线交 AC 的延长线于点 D ,过点 D 作 DE ⊥ AB 交 AB 的延长线于点 E ,求证: CD = 2 BE .
AB是⊙O的直径,AB=2.点C在⊙O上,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,连结OC,过点C作CD⊥OC交PQ于点D.(1)求证:△CDQ是等腰三角形;(2)如果△CDQ≌△COB,求BP的长.
阅读下面的材料,回答问题: 解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4. 当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2; ∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2. (1)在由原方程得到方程①的过程中,利用 法达到降次的目的,体现了数学的转化思想. (2)解方程:(x2+3x)2+5(x2+3x)-6=0.
如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为E、F. (1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么? (2)如果OE=OF,那么与的大小有什么关系?为什么?
如图,O是正六边形ABCDEF的中心,连接BD、DF、FB, (1)设△BDF的面积为S1,正六边形ABCDEF的面积为S2 ,则S1与S2的数量关系是 ; (2)△ABF通过旋转可与△CDB重合,请指出旋转中心和最小旋转角的度数.
解方程:(1) (2)x2 -4x+1=0