如图, 已知正方形 ABCD 的边长为 1 , P , Q 是其内两点, 且 ∠ PAQ = ∠ PCQ = 45 ∘ .求 S △ PAB + S △ PCQ + S △ QAD 的值.
(本题12分)如图甲,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.(1)在图甲中,你发现线段AC、BD的数量关系是_______,直线AC、BD相交成____度角;(2)将图甲中的绕点O顺时针旋转,在图乙中作出旋转后的;(3)将图甲中的绕点O顺时针旋转一个锐角,得到图丙,这时(1)中的两个结论是否成立?作出判断,并说明理由.若绕点O继续旋转更大的角度时,结论仍然成立吗?作出判断,不必说明理由.
(本题10分)食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案1若直接给本厂设在某地的门市部销售,则每千克售价为32元,但门市部每月需要有关费用2400元。方案2若直接批发给超市销售,则出厂价为每千克28元。若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为千克。(1)如果你是厂长,应该如何选择销售方案,可使工厂当月所获利润更大? (2)厂长看到会计送来的第一季度销售量与利润关系的报表(如下表)后,发现该表填写的销售量与实际有不符之处,请找出不符之处,并计算第一季度的实际销售总量
(本题8分)小唐同学正在操场上放风筝,风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A、B之间的距离;(2)此时,在A处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少?(结果保留根号)
(本题8分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为()cm,正六边形的边长为()cm.求这两段铁丝的总长
(本题6分)A市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?