超市购进某种苹果,如果进价增加 2 元 / kg 要用300元;如果进价减少2元 / kg ,同样数量的苹果只用 200 元.
(1)求苹果的进价;
(2)如果购进这种苹果不超过 100 kg ,就按原价购进;如果购进苹果超过 100 kg ,超过部分购进价格减少 2 元 / kg ,写出购进苹果的支出 y ( 元 ) 与购进数量 x kg 之间的函数关系式;
(3)超市一天购进苹果数量不超过 300 kg ,且购进苹果当天全部销售完,据统计,销售单价 z ( 元 / kg ) 与一天销售数量 x kg 的关系为 z = - 1 100 x + 12 .在(2)的条件下,要使超市销售苹果利润 w (元)最大,求一天购进的苹果数量.(利润=销售收入-购进支出)
(1)尺规作图:作出⊙O的内接正方形ABCD,使正方形ABCD的对边AD,BC都垂直于EF(见示意图);(说明:不要求写作法,但须保留作图痕迹) (2)连接EA、EB,求出∠EAD、∠EBC的度数.
已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足 ∠MAN=45°,连结MC,NC,MN. (1)填空:与△ABM相似的三角形是△,BM·DN=;(用含a的代数式表示) (2)求∠MCN的度数; (3)猜想线段BM,DN和MN之间的数量关系并证明你的结论.
如图1,已知四边形ABCD,点P为平面内一动点.如果∠PAD=∠PBC,那么我们称点P为四边形ABCD关于A、B的等角点. 如图2,以点B为坐标原点,BC所在直线为x轴建立平面直角坐标系,点C的横坐标为6. (1)若A、D两点的坐标分别为A(0,4)、D(6,4),当四边形ABCD关于A、B的等角点P在DC边上时,则点P的坐标为; (2)若A、D两点的坐标分别为A(2,4)、D(6,4),当四边形ABCD关于A、B的角点P在DC边上时,求点P的坐标; (3)若A、D两点的坐标分别为A(2,4)、D(10,4),点P(x,y)为四边形ABCD关于A、B的等角点,其中x>2,y>0,求y与x之间的关系式.
当时,下列关系式中有且仅有一个正确. A. B. C. (1)正确的选项是; (2)如图1,△ABC中, ,请利用此图证明(1)中的结论; (3)两块分别含和的直角三角板如图2方式放置在同一平面内,,求.
已知:在△ABC中,∠B为锐角,,AB=15,AC=13,求BC的长.