某超市决定从厂家购进甲、乙、丙三种不同型号的计算器80只,其中甲种计算器的只数是乙种计算器只数的2倍,购买三种计算器的总金额不超过3300元.已知甲、乙、丙三种计算器的出厂价格分别为:30元/只、40元/只、50元/只.(1)至少购进乙种计算器多少只?(2)若要求甲种计算器的只数不超过丙种计算器的只数,则有哪些购买方案?
如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形. (1)你认为图②中的阴影部分的正方形的边长等于 . (2)请用两种不同的方法列代数式表示图②中阴影部分的面积, 方法① .方法② . (3)观察图②,你能写出(m+n)2,(m-n)2,mn这三个代数式之间的等量关系吗? (4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a-b)2的值.
一个正方形的一边增加3cm,相邻一边减少3cm,所得矩形面积与这个正方形的每边减去1cm所得的正方形面积相等,求这矩形的长与宽.
证明:不论取何实数,多项式的值都不会是正数.
(1)先化简,再求值:,其中a=-2,b=3 (2)已知,ab=-2,求代数式的值.
因式分解: (1); (2); (3); (4)(x+y)2+2(x+y)+1; (5)(m2+n2)2-4m2n2; (6)