图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.
(1)网格中△ABC的形状是 ;
(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;
(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;
(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.
丁丁推铅球的出手高度为,在如图所示的直角坐标系中,求铅球的落点与丁丁的距离.
解方程:.
已知直线及外一点,分别按下列要求写出画法,并保留两图痕迹.(1)在图1中,只用圆规在直线上画出两点,使得点是一个等腰三角形的三个顶点;(2)在图2中,只用圆规在直线外画出一点,使得点所在直线与直线平行.
在平面内,先将一个多边形以点为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为,并且原多边形上的任一点,它的对应点在线段或其延长线上;接着将所得多边形以点为旋转中心,逆时针旋转一个角度,这种经过和旋转的图形变换叫做旋转相似变换,记为,其中点叫做旋转相似中心,叫做相似比,叫做旋转角.(1)填空:①如图1,将以点为旋转相似中心,放大为原来的2倍,再逆时针旋转,得到,这个旋转相似变换记为( , );②如图2,是边长为的等边三角形,将它作旋转相似变换,得到,则线段的长为 ;(2)如图3,分别以锐角三角形的三边,,为边向外作正方形,,,点,,分别是这三个正方形的对角线交点,试分别利用与,与之间的关系,运用旋转相似变换的知识说明线段与之间的关系.
在梯形中,,,,点分别在线段上(点与点不重合),且,设,.(1)求与的函数表达式;(2)当为何值时,有最大值,最大值是多少?