已知抛物线经过 A ( ﹣ 1 , 0 ) 、 B ( 0 , 3 ) 、 C ( 3 , 0 ) 三点,O为坐标原点,抛物线交正方形 O B D C 的边 B D 于点 E ,点 M 为射线 B D 上一动点,连接 O M ,交 B C 于点 F .
(1)求抛物线的表达式;
(2)求证: ∠ B O F = ∠ B D F ;
(3)是否存在点 M ,使 △ M D F 为等腰三角形?若不存在,请说明理由;若存在,求 M E 的长.
已知:如图,是的直径,切于,交于,为边的中点,连结. (1) 是的切线; (2) 若, 的半径为5, 求的长.
.已知:如图,梯形ABCD中,∥,,,,点E在BC边上,将△CDE沿DE折叠,点C恰好落在AB边上的点处. (1)求的度数; (2)求△的面积.
已知:如图,在平面直角坐标系中,一次函数的图象分别与轴交于点A、 B,点在轴上,若,求直线PB的函数解析式.
列方程或方程组解应用题: 我区教委要求各学校师生开展“彩虹读书活动”. 某校九年级一班和九年级二班的学生向学校图书馆借课外读物共196本,一班为每位学生借3本,二班为每位学生借2本,一班借的课外读物数量比二班借的课外读物数量多44本,求九年级一班和二班各有学生多少人?
已知:如图,中,,于,于,与相交于点.求证:;