学校举行“爱我中华,朗诵经典”班级朗诵比赛,黄老师收集了所有参赛班级的成绩后,把成绩 x (满分 100 分)分成四个等级( A : 90 ≤ x ≤ 100 , B : 80 ≤ x < 90 , C : 70 ≤ x < 80 , D : 60 ≤ x < 70 )进行统计,并绘制成如下不完整的条形统计图和扇形统计图.
根据信息作答:
(1)参赛班级总数有_____个; m = _____;
(2)补全条形统计图;
(3)统计发现D等级中七年级、八年级各有两个班,为了提高D等级班级的朗诵水平,语文组老师计划从D等级班级中任选两个班进行首轮培训,求选中两个班恰好是同一个年级的概率(用画树状图或列表法把所有可能结果表示出来).
解方程:(8分) (1)2x2-4x-5=0 (2)(x-2)2=(2x+3)2
作图题(5分) 已知:∠ABC和线段DE,求作一点P,使这一点到∠ABC两边的距离相等并且到线段DE两端点的距离也相等.(不要求写作法,保留作图痕迹)
(1)如图1,在正方形ABCD中,点E、F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF. (2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.求GH的长. (3)已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案: ①如图3,矩形ABCD由2个全等的正方形组成,GH=____. ②如图4,矩形ABCD由n个全等的正方形组成,GH=____(用含n的代数式表示)
列方程解应用题(10分) 某单位组织职工旅游.下面是领队向旅行社导游咨询收费标准的一段对话: 领队:组团去“医巫闾山”旅游每人收费是多少? 导游:如果人数不超过25人,人均旅游费用为100元. 领队:超过25人怎样优惠呢? 导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元. 该单位按旅行社的收费标准组团游览“医巫闾山”结束后,共支付给旅行社 2700元. 请你根据上述信息,求该单位这次到“医巫闾山”旅游的共有多少人?
如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、DE的长度关系及所在直线的位置关系: (1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系(直接写出答案); ②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α得到图2,图3的情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断. (2)在第(1)题图2中,连接DG、BE,且AB=3,EF=2,求BE2+DG2的值.