如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.
已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120°后,得到△ABE',连接EE'. (1)如图1,∠AEE'= °; (2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系; (3)如图3,在(2)的条件下,如果CE=2,AE=,求ME的长.
已知二次函数y=x2–kx+k–1(k>2). (1)求证:抛物线y=x2–kx+k-1(k>2)与x轴必有两个交点; (2)抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,若,求抛物线的表达式; (3)以(2)中的抛物线上一点P(m,n)为圆心,1为半径作圆,直接写出:当m取何值时,x轴与相离、相切、相交.
由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A市位于台风中心M北偏东15°的方向上,距离千米,B市位于台风中心M正东方向千米处. 台风中心以每小时30千米的速度沿MF向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响. (1)A市、B市是否会受到此次台风的影响?说明理由. (2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?
阅读下面的材料: 小明遇到一个问题:如图(1),在□ABCD中,点E是边BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.如果,求的值. 他的做法是:过点E作EH∥AB交BG于点H,则可以得到△BAF∽△HEF. 请你回答:(1)AB和EH的数量关系为,CG和EH的数量关系为,的值为. (2)如图(2),在原题的其他条件不变的情况下,如果,那么的值为(用含a的代数式表示). (3)请你参考小明的方法继续探究:如图(3),在四边形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F. 如果,那么的值为(用含m,n的代数式表示).
已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F. (1)求证:DE是⊙O的切线; (2)若⊙O的半径为4,BE=2,求∠F的度数.