如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.
求值:(2+1)•(22+1)•(24+1)•(28+1)•(216+1)﹣232.
利用平方差公式计算99992.
利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.我们刚学过的《从面积到乘法公式》就很好地体现了这一思想方法,你能利用数形结合的思想解决下列问题吗? 如图,一个边长为1的正方形,依次取正方形的,根据图示我们可以知道:第一次取走后还剩,即=1﹣;前两次取走+后还剩,即+=1﹣;前三次取走++后还剩,即++=1﹣;…前n次取走后,还剩 _________ ,即 _________ = _________ . 利用上述计算: (1)= _________ . (2)= _________ . (3)2﹣22﹣23﹣24﹣25﹣26﹣…﹣22011+22012(本题写出解题过程)
“*”是规定的一种运算法则:a*b=a2﹣b. ①求5*(﹣1)的值; ②若3*x=2,求x的值; ③若(﹣4)*x=2+x,求x的值.
大家已经知道,完全平方公式和平方差公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:2x(x+y)=2x2+2xy就可以用图的面积表示. (1)请写出图(2)所表示的代数恒等式: _______ ; (2)请写出图(3)所表示的代数恒等式: ________ ; (3)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2.