某企业投入 60 万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量 y (万件)与售价 x (元/件)之间满足函数关系式 y = 24 ﹣ x ,第一年除 60 万元外其他成本为 8 元/件.
(1)求该产品第一年的利润 w (万元)与售价x之间的函数关系式;
(2)该产品第一年利润为 4 万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降 2 元/件.
①求该产品第一年的售价;
②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?
如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P、Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?
如图,已知矩形ABCD中,BC=6,AB=8,延长AD到点E,使AE=15,连结BE交AC于点P.(1)求AP的长;(2)若以点A为圆心,AP为半径作⊙A,试判断线段BE与⊙A的位置关系并说明理由;(3)已知以点A为圆心,r1为半径的动OA,使点D在动⊙A的内部,点B在动⊙A的外部. ①则动⊙A的半径r1的取值范围是▲; ②若以点C为圆心,r2为半径的动⊙C与动⊙A相切,则r2的取值范围是▲.
已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由; (3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.
元旦,小美和同学一起到游乐场游玩.游乐场的大型摩天轮的半径为20m,匀速旋转1周需要12min.小美乘坐最底部的车厢(离地面约0.5m)开始1周的观光.请回答下列问题:(参考数据:≈l.414,≈1.732) (1) 1.5min后小美离地面的高度是▲m.(精确到0.1m)(2)摩天轮启动▲min后,小美离地面的高度将首次达到10.5m.(3)小美将有▲min连续保持在离地面10.5m以上的空中.(4)t min(0≤t≤6)后小美离地面的高度h是多少?(结果用t表示)
用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2xm.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.