网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量 y ( kg ) 与销售单价 x (元 ) 满足如图所示的函数关系(其中 10 < x ⩽ 30 ) .
(1)直接写出 y 与 x 之间的函数关系式及自变量的取值范围.
(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价 x 应定为多少元?
(3)设每天销售该特产的利润为 W 元,若 14 < x ⩽ 30 ,求:销售单价 x 为多少元时,每天的销售利润最大?最大利润是多少元?
某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?
在不透明的口袋中,有四只形状、大小、质地完全相同的小球,四只小球上分别标有数字,2,4,- . 小明先从盒子里随机取出一只小球(不放回),记下数字作为平面直角坐标系内点的横坐标;再由小华随机取出一只小球,记下数字作为平面直角坐标系内点的纵坐标.用列表法或画树状图,表示所有这些点的坐标;小刚为小明、小华两人设计了一个游戏:当上述(1)中的点在第一象限时小明获胜,否则小华获胜. 你认为这个游戏公平吗?请说明理由.
某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径.
已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F. 求证:BE=DF.
解不等式组,并把解集在数轴上表示出来.