[选修4―4:坐标系与参数方程]
在直角坐标系 xOy中,直线 l 1 的参数方程为 x = 2 + t , y = kt , ( t为参数),直线 l 2 的参数方程为 x = - 2 + m , y = m k , ( m 为参数) .设 l 1与 l 2的交点为 P,当 k变化时, P的轨迹为曲线 C .
(1)写出 C的普通方程;
(2)以坐标原点为极点, x轴正半轴为极轴建立极坐标系,设 l 3 : ρ ( cos θ + sinθ ) - 2 = 0 , M为 l 3与 C的交点,求 M的极径.
指出下列命题的真假:(1)命题“不等式(x+2)2≤0没有实数解”;(2)命题“1是偶数或奇数”;(3)命题“属于集合Q,也属于集合R”;(4)命题“AAB”.
写出下列命题的否定并判断真假.(1)p:所有末位数字是0的整数都能被5整除;(2)q:x≥0,x2>0;(3)r:存在一个三角形,它的内角和大于180°;(4)t:某些梯形的对角线互相平分.
已知a>0,设命题p:函数y=ax在R上单调递减,q:不等式x+|x-2a|>1的解集为R,若p和q中有且只有一个命题为真命题,求a的取值范围.
已知p:|1-|≤2,q:x2-2x+1-m2≤0(m>0),且p是q的必要而不充分条件,求实数m的取值范围.
(1)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在,求出p的取值范围;(2)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的必要条件?如果存在,求出p的取值范围.