已知一个口袋有 m 个白球, n 个黑球 ( m , n ∈ N * , n ≥ 2 ) ,这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…, m + n 的抽屉内,其中第k次取出的球放入编号为k的抽屉 ( k = 1 , 2 , 3 , … , m + n ) .
(Ⅰ)试求编号为2的抽屉内放的是黑球的概率 p ;
(Ⅱ)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E ( X ) 是 X 的数学期望,证明 E ( X )< n ( m + n ) ( n - 1 ) .
已知直线过点,直线的斜率为且过点. (1)求、的交点的坐标; (2)已知点,若直线过点且与线段相交,求直线的斜率的取值范围.
如图,已知在四棱锥中, 底面四边形是直角梯形, ,,. (1)求证:; (2)求直线与底面所成角的正切值.
已知函数且. (1)求函数的定义域; (2)判断的奇偶性并予以证明.
设正数列的前项和为,且. (1)求数列的首项; (2)求数列的通项公式; (3)设,是数列的前项和,求使得对所有都成立的最小正整数.
已知顶点是坐标原点,对称轴是轴的抛物线经过点. (1)求抛物线的标准方程; (2)直线过定点,斜率为,当为何值时,直线与抛物线有公共点?