设常数 t > 2 ,在平面直角坐标系xOy中,已知点F(2,0),直线 l : x = t ,曲线 Γ : y ² = 8 x 0 ≤ x ≤ t , y ≥ 0 , l 与x轴交于点A,与 Γ 交于点B,P、Q分别是曲线 Γ 与线段AB上的动点。
(1)用t表示点B到点F的距离;
(2)设t=3, ∣ FQ ∣ = 2 ,线段OQ的中点在直线FP上,求△AQP的面积;
(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在 Γ 上?若存在,求点P的坐标;若不存在,说明理由。
, (1)若命题T为真命题,求c的取值范围。 (2)若P或Q为真命题,P且Q为假命题,求c的取值范围.
已知集合A=,集合B=。 当=2时,求; 当时,若元素是的必要条件,求实数的取值范围。
(本小题满分12分)四棱锥中,底面为矩形,侧面底面,,,. (Ⅰ)证明:; (Ⅱ)设与平面所成的角为, 求二面角的余弦值.
(本小题满分12分)已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且==λ (0<λ<1). (1)求证:不论λ为何值,总有平面BEF⊥平面ABC; (2)当λ为何值时?平面BEF⊥平面ACD.
(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°. (1)求证:PC⊥BC; (2)求点A到平面PBC的距离.