已知二次函数 y = g ( x ) 的导函数的图像与直线 y = 2 x 平行,且 y = g ( x ) 在 x = - 1 处取得极小值 m - 1 ( m ≠ 0 ) .设 f ( x ) = g ( x ) x .
(1)若曲线 y = f ( x ) 上的点 P 到点 Q ( 0 , 2 ) 的距离的最小值为 2 ,求 m 的值;
(2) k ( k ∈ R ) 如何取值时,函数 y = f ( x ) - kx 存在零点,并求出零点.
已知某几何体的俯视图是如图所示的矩形,主视图(或称正视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.
如图,已知正方体ABCD-A1B1C1D1中,M是AA1的中点,N是BB1的中点.求证:平面MDB1∥平面ANC.
已知函数是上的偶函数,其图象关于点对称,且在区间上是单调函数,求和的值.
向量=,=,设函数=(a∈,且a为常数).(1)若为任意实数,求的最小正周期;(2)若在上的最大值与最小值之和为7,求的值.
为积极配合湛江市2015年省运会志愿者招募工作,某大学数学学院拟成立由4名同学组成的志愿者招募宣传队,经过初步选定,2名男同学,4名女同学共6名同学成为候选人,每位候选人当选宣传队队员的机会是相同的.(1)求当选的4名同学中恰有1名男同学的概率;(2)求当选的4名同学中至少有3名女同学的概率.