为积极配合湛江市2015年省运会志愿者招募工作,某大学数学学院拟成立由4名同学组成的志愿者招募宣传队,经过初步选定,2名男同学,4名女同学共6名同学成为候选人,每位候选人当选宣传队队员的机会是相同的.(1)求当选的4名同学中恰有1名男同学的概率;(2)求当选的4名同学中至少有3名女同学的概率.
(本小题满分14分)已知函数的图象在点(为自然对数的底数)处的切线斜率为3.(1)求实数的值;(2)若,且对任意恒成立,求的最大值;(3)当时,证明.
(本小题满分14分)已知双曲线:和圆:(其中原点为圆心),过双曲线上一点引圆的两条切线,切点分别为、. (1)若双曲线上存在点,使得,求双曲线离心率的取值范围;(2)求直线的方程;(3)求三角形面积的最大值.
(本小题满分14分)已知数列的前项和,且.(1)求数列{an}的通项公式;(2)令,是否存在(),使得、、成等比数列.若存在,求出所有符合条件的值;若不存在,请说明理由.
(本小题满分14分)一个几何体是由圆柱和三棱锥组合而成,点、、在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图3所示,其中,,,.(1)求证:;(2)求二面角的平面角的大小.
.(本小题满分12分)某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为.(1)试确定、的值;(2)从40人中任意抽取3人,求其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率;(3)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为,求随机变量的数学期望.