(本小题满分12分)设F1、F2分别是椭圆的左、右焦点。(I)若P是第一象限内该椭圆上的一点,且,求点P的坐标;(II)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围。
若 , 试求;
设函数 (Ⅰ)求函数的极大值; (Ⅱ)若时,恒有成立(其中是函数的导函数),试确定实数的取值范围.
已知椭圆过点,且离心率为. (1)求椭圆的方程; (2)为椭圆的左右顶点,直线与轴交于点,点是椭圆上异于的动点,直线分别交直线于两点.证明:当点在椭圆上运动时,恒为定值.
如图,在三棱柱中,,顶点在底面上的射影恰为点,且. (Ⅰ)证明:平面平面; (Ⅱ)求棱与所成的角的大小; (Ⅲ)若点为的中点,并求出二面角的平面角的余弦值.
已知等比数列的公比, 是和的一个等比中项,和的等差中项为,若数列满足(). (Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和.