如下图,已知正方体 ABCD - A 1 B 1 C 1 D 1 的棱长为2,点E是正方形 BC C 1 B 1 的中心,点F、G分别是棱 C 1 D 1 , A A 1 的中点.设点 E 1 , G 1 分别是点E,G在平面 DC C 1 D 1 内的正投影.
(1)求以E为顶点,以四边形 FGAE 在平面 DC C 1 D 1 内的正投影为底面边界的棱锥的体积;
(2)证明:直线 F G 1 ⊥ 平面 FE E 1 ;
(3)求异面直线 E 1 G 1 与 EA 所成角的正弦值.
四棱锥A-BCDE的正视图和俯视图如下,其中正视图是等边三角形,俯视图是直角梯形. (Ⅰ)若F为AC的中点,当点M在棱AD上移动,是否总有BF丄CM,请说明理由. (Ⅱ)求三棱锥的高.
已知等比数列是递增数列,,数列满足,且() (Ⅰ)证明:数列是等差数列; (Ⅱ)若对任意,不等式总成立,求实数的最大值.
在△ABC中,角A,B,C所对的边分别为,函数的图象关于点对称. (Ⅰ)当时,求的值域; (Ⅱ)若且,求△ABC的面积.
已知数列,当时满足, (Ⅰ)求该数列的通项公式; (Ⅱ)令,求数列的前n项和.
已知函数的部分图象如图所示. (Ⅰ)求函数的解析式,并写出的单调减区间; (Ⅱ)已知的内角分别是A,B,C,角A为锐角,且的值.