如图, 在平面直角坐标系 xOy 中, 已知以 M 为圆心的圆
M : x 2 + y 2 - 12 x - 14 y + 60 = 0 及其上一点 A ( 2 , 4 )
(1) 设圆 N 与 x 轴相切, 与圆 M 外切, 且圆心 N 在直线 x = 6 上, 求圆 N 的标准方程;
(2) 设平行于 OA 的直线 l 与圆 M 相交于 B , C 两点, 且 BC = OA , 求直线 l 的方程;
(3) 设点 T ( t , 0 ) 满足:存在圆 M 上的两点 P 和 Q , 使得 TA ⃗ + TP ⃗ = TQ ⃗ , 求实数 t 的取值范围。
设全集为,集合,. (1)求如图阴影部分表示的集合; (2)已知,若,求实数的取值范围.
已知直线经过直线与直线的交点,且垂直于直线. (1)求直线的方程; (2)求直线关于原点对称的直线方程.
已知函数在区间上的最大值是,最小值是. (1) 写出和的解析式. (2) 当函数的最大值为3、最小值为2时,求实数a的取值范围.
已知函数 (1)是否存在实数,使函数是上的奇函数,若存在求出,若不存在,也要说明理由. (2)探索函数的单调性,并利用定义加以证明. (3)求函数的值域.
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度是车流密度的一次函数. (1)当时,求函数的表达式. (2)当车流密度为多大时,车流量(单位时间内通过桥上某观查点的车辆数,单位: 辆/每小时)可以达到最大,并求最大值(精确到1辆/每小时).