(本小题满分12分)在平面直角坐标系xOy中,有一个以为和焦点、离心率为的椭圆.设椭圆在第一象限的部分为曲线C, 动点P在C上, C在点P处的切线与x , y轴的交点分别为A、B,且向量.求:(1)点M的轨迹方程; (2)的最小值.
已知命题p: 方程有两个大于-1的实数根,已知命题q:关于x的不等式的解集是R,若“p或q”与“” 同时为真命题,求实数a的取值范围(12分)
已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点(4,-)(1)求双曲线的方程.(2)若点M(3,m)在双曲线上,求证:.(3)若点A,B在双曲线上,点N(3,1)恰好是AB的中点,求直线AB的方程(12分)
已知平行六面体ABCD—A1B1C1D1中,以顶点 A为端点的三条棱 长都等于1,两两夹角都是60°,求对角线AC1的长度. (10分)
设A、B、C是三角形的三内角,且lgsinA=0,又sinB、sinC是关于x的方程4x2-2(+1)x+k=0的两个根,求实数k的值.
若,试求y=f(x)的解析式.