(本小题满分14分)设椭圆方程 (),为椭圆右焦点,为椭圆在短轴上的一个顶点,的面积为6,(为坐标原点);(1)求椭圆方程;(2)在椭圆上是否存在一点,使的中垂线过点?若存在,求出点坐标;若不存在,说明理由.
(本小题满分12分) 已知函数,.设时取到最大值. (1)求的最大值及的值; (2)在中,角,,所对的边分别为,,,,且,求的值.
(本小题满分10分) 已知函数,. (1)若关于的方程只有一个实数解,求实数的取值范围; (2)若当时,不等式恒成立,求实数的取值范围.
(本小题满分10分) 如图,已知圆是的外接圆,,是边上的高,是圆的直径.过点作圆的切线交的延长线于点. (1)求证:; (2)若,,求的长.
(本小题满分12分) 已知函数,. (1)若在上的最大值为,求实数的值; (2)若对任意,都有恒成立,求实数的取值范围; (3)在(1)的条件下,设,对任意给定的正实数,曲线上是否存在两点、,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由.
(本题小满分12分) 如图,在直角梯形中,,,平面,,. (1)求证:平面; (2)在直线上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,说明理由.