已知椭圆经过点,为坐标原点,平行于的直线在轴上的截距为.(1)当时,判断直线与椭圆的位置关系(写出结论,不需证明);(2)当时,为椭圆上的动点,求点到直线 距离的最小值;(3)如图,当交椭圆于、两个不同点时,求证:直线、与轴始终围成一个等腰三角形.
(本小题满分12分)在中,角所对的边为,且满足(1)求角的值;(2)若且,求的取值范围.
(本小题满分10分)选修4-5;不等式选讲若且(1)求的最小值;(2)是否存在,使得?并说明理由.
(本小题满分10分)选修4-4:坐标系与参数方程已知曲线,直线(为参数)(1)写出曲线的参数方程,直线的普通方程;(2)过曲线上任意一点作与夹角为30°的直线,交于点,求的最大值与最小值.
(本小题满分10分)选修4-1,几何证明选讲如图,四边形是的内接四边形,的延长线与的延长线交于点,且.(1)证明:;(2)设不是的直径,的中点为,且, 证明:为等边三角形.
已知焦点在轴,顶点在原点的抛物线经过点,以抛物线上一点为圆心的圆过定点(0,1),记为圆与轴的两个交点.(1)求抛物线的方程;(2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论;(3)当圆心在抛物线上运动时,记,,求的最大值.