(本小题满分12分)P、Q、M、N四点都在椭圆上,F为椭圆在y轴正半轴上的焦点.已知与共线,且与共线.求四边形PMQN的面积的最小值和最大值.
如图,E是以AB为直径的半圆弧上异于A,B的点,矩形ABCD所在平面垂直于该半圆所在的平面,且AB=2AD=2。(1).求证:EA⊥EC;(2).设平面ECD与半圆弧的另一个交点为F。①求证:EF//AB;②若EF=1,求三棱锥E—ADF的体积
已知向量,设函数.(1).求函数f(x)的最小正周期;(2).已知a,b,c分别为三角形ABC的内角对应的三边长,A为锐角,a=1,,且恰是函数f(x)在上的最大值,求A,b和三角形ABC的面积.
设数列是等差数列,且且成等比数列。(1).求数列的通项公式(2).设,求前n项和.
已知f(x)=|x+1|+|x-1|,不等式f(x)的解集为M.(1)求M;(2)当a,bM时,证明:2|a+b|<|4+ab|.
以直角坐标系的原点为极点O,轴正半轴为极轴,已知点P的直角坐标为(1,-5),点C的极坐标为,若直线l经过点P,且倾斜角为,圆C的半径为4.(1).求直线l的参数方程及圆C的极坐标方程;(2).试判断直线l与圆C有位置关系.