已知不等式的解集为.(1)求;(2)解不等式.
设函数与的定义域是且,是偶函数, 是奇函数,且,求和的解析式.
已知函数的定义域为,且对任意,都有,且当时,恒成立, 证明:(1)函数是上的减函数; (2)函数是奇函数。
判断下列函数的奇偶性: (1)(2)
已知数列的前项和,求数列是等比数列的充要条件。
证明一次函数是奇函数的充要条件是。