设椭圆 x 2 a 2 + y 2 b 2 = 1 (a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为 5 3 ,点A的坐标为 b , 0 ,且 FB ⋅ AB = 6 2 .
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l: y = kx ( k > 0 ) 与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若 AQ PQ = 5 2 4 sin ∠ AOQ (O为原点) ,求k的值.
正项数列满足.(1)求数列的通项公式;(2)令,求数列的前项和.
用一颗骰子连掷三次,投掷出的数字顺次排成一个三位数,此时:(1)各位数字互不相同的三位数有多少个?(2)可以排出多少个不同的数?(3)恰好有两个相同数字的三位数共有多少个?
已知数列前项和且,(1)试求(2)猜想的表达式,并用数学归纳法证明猜想.
已知是复数,若为实数(为虚数单位),且为纯虚数.(1)求复数;(2)若复数在复平面上对应的点在第四象限,求实数的取值范围
已知在区间上是增函数,在区间和上是减函数,且(1)求函数的解析式.(2)若在区间上恒有,求实数的取值范围.