如图, AD / / BC 且AD=2BC, AD ⊥ CD , EG / / AD 且EG=AD, CD / / FG 且CD=2FG, DG ⊥ 平面 ABCD ,DA=DC=DG=2.
(Ⅰ)若M为CF的中点,N为EG的中点,求证: MN ∥ 平面 CDE ;
(Ⅱ)求二面角 E - BC - F 的正弦值;
(Ⅲ)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.
已知函数. (1)求函数的最小正周期及在区间的最大值; (2)在中,、、所对的边分别是、、,,,求周长的最大值.
已知函数对任意都满足,且,数列满足:,. (Ⅰ)求及的值; (Ⅱ)求数列的通项公式; (Ⅲ)若,试问数列是否存在最大项和最小项?若存在,求出最大项和最小项;若不存在,请说明理由.
已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为. (Ⅰ)求椭圆的标准方程; (Ⅱ)若直线与椭圆交于两点,是否存在实数,使成立?若存在,求的值;若不存在,请说明理由.
已知函数(,). (Ⅰ)当时,求曲线在点处切线的方程; (Ⅱ)求函数的单调区间; (Ⅲ)当时,恒成立,求的取值范围.
如图,在四棱锥中,底面是正方形,侧面底面. (Ⅰ)若,分别为,中点,求证:∥平面; (Ⅱ)求证:; (Ⅲ)若,求证:平面平面.