已知函数,m∈R,且的解集为.(1)求的值;(2)若+,且,求的最小值.
如图,在直三棱柱ABC A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分别是A1C1,BC的中点. (1)证明:平面AEB⊥平面BB1C1C; (2)证明:C1F∥平面ABE; (3)设P是BE的中点,求三棱锥P B1C1F的体积.
如图,在四棱锥O ABCD中,底面ABCD为菱形,OA⊥平面ABCD,E为OA的中点,F为BC的中点,求证:(1)平面BDO⊥平面ACO;(2)EF∥平面OCD.
如图,四边形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC. (1)求证:平面AEC⊥平面ABE; (2)点F在BE上.若DE∥平面ACF,求的值.
如图所示,已知PA与⊙O相切,A为切点,PBC为割线,CD∥AP,AD与BC相交于点E,F为CE上一点,且DE2=EF·EC. (1)求证:∠P=∠EDF; (2)求证:CE·EB=EF·EP; (3)若CE∶BE=3∶2,DE=6,EF=4,求PA的长.
如图所示,E是⊙O内两弦AB和CD的交点,直线EF∥CB,交AD的延长线于F,FG切⊙O于G.求证: (1)△DFE∽△EFA; (2)EF=FG.