已知函数,其中a为常数.(1)当时,求的最大值;(2)若在区间(0,e]上的最大值为,求a的值;(3)当时,试推断方程=是否有实数解.
已知点直线,为平面上的动点,过点作直线的垂线,垂足为,且.(1)求动点的轨迹方程;(2)、是轨迹上异于坐标原点的不同两点,轨迹在点、处的切线分别为、,且,、相交于点,求点的纵坐标.
设数列的前项和为,且.(1)求数列的通项公式;(2)设,求证:.
在如图的多面体中,平面,,,,,,,是的中点.(1)求证:平面;(2)求证:;(3)求三棱锥的体积.
随着工业化的发展,环境污染愈来愈严重.某市环保部门随机抽取60名市民对本市空气质量满意度打分,把数据分、、、六段后得到如下频率分布表:
(1)求表中数据、、的值;(2)用分层抽样的方法在分数的市民中抽取容量为的样本,将该样本看成一个总体,从中任取人在分数段的概率.
已知函数,.(1)当为何值时,取得最大值,并求出其最大值;(2)若,,求的值.