已知数列 x n 满足 : x 1 = 1 , x n = x n + 1 + ln 1 + x n + 1 n ∈ N * .
证明: 当 n ∈ N * 时,
( I ) 0 < x n + 1 < x n ;
( II ) 2 x n + 1 - x n ⩽ x n x n + 1 2 ;
( III ) 1 2 n - 1 ⩽ x n ⩽ 1 2 n - 2 .
.(文)如图,已知矩形的边与正方形所在平面垂直,,,是线段的中点。 (1)求异面直线与直线所成的角的大小; (2)求多面体的表面积。
..(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分. (理)如图,已知矩形的边与正方形所在平面垂直,,,是线段的中点。 (1)求证:平面; (2)求二面角的大小。
已知抛物线的顶点在坐标原点O,焦点F在x正半轴上,倾斜角为锐角的直线过F点。设直线与抛物线交于A、B两点,与抛物线的准线交于M点, (I)若,求直线的斜率; (II)若点A、B在x轴上的射影分别为A1、B1,且成等差数列,求的值。
已知函数 ,. (Ⅰ)当 时,求函数 的最小值; (Ⅱ)当 时,讨论函数 的单调性; (Ⅲ)是否存在实数,对任意的 ,且,有,恒成立,若存在求出的取值范围,若不存在,说明理由。
如图,在四棱锥中,平面平面.底面为矩形, ,. (Ⅰ)求证:; (Ⅱ)求二面角的大小.