新华中学高三年级(1)班有甲,乙两个数学学习小组,每组抽选名同学参加学校数学测试,成绩(满分分)的茎叶图如图所示,其中甲组的平均成绩是,乙组成绩的中位数是.(1)求茎叶图中,的值;(2)现要从测试成绩分及以上的学生随机抽取名参加某次数学活动,若来自乙组的同学有名,求关于的分布列与期望.
已知数列中,,满足。 (1)求证:数列为等差数列; (2)求数列的前项和.
已知函数f(x)=lnx,g(x)=k·. (I)求函数F(x)= f(x)- g(x)的单调区间; (Ⅱ)当x>1时,函数f(x)> g(x)恒成立,求实数k的取值范围; (Ⅲ)设正实数a1,a2,a3,,an满足a1+a2+a3++an=1, 求证:ln(1+)+ln(1+)++ln(1+)>.
数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n·bn+1(为常数,且≠1). (I)求数列{an}的通项公式及的值; (Ⅱ)比较++++与了Sn的大小.
已知向量=(sin2x+2,cosx),=(1,2cosx),设函数f(x)= ·. (I)求f(x)的最小正周期与单调递增区间; (Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若a=,f(A)=4,求b+c的最大值.
在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且==. (Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上; (Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点;并求△GMN面积的最大值.