设数列 A : a 1 , a 2 , … a N ( N ≥ ) .如果对小于 n ( 2 ≤ n ≤ N ) , 的每个正整数 k 都有 a k < a n 则称 n 是数列 A 的一个 " G 时刻" , 记 G ( A ) 是数列 A 的所有 " G 时刻" 组成的集合.
(1)对数列 A: - 2 , 2 , - 1 , 1 , 3 , 写出 G ( A ) 的所有元素;
(2)证明:若数列 A 中存在 a n 使得 a n > a 1 , 则 G ( A ) ≠ ∅ ;
(3)证明:若数列 A 满足 a n - a n - 1 ≤ ( n = 2 , 3 , … , N ) 则G(A)的元素个数小于 a N - a 1 ;
(本小题满分12分)设有同频率的两个正弦电流,,把它们合成后,得到电流.(1)求电流的最小正周期和频率;(2)设,求电流的最大值和最小值,并指出第一次达到最大值和最小值时的值.
函数的图像上一个最高点的坐标为与之相邻的一个最低点的坐标为. (Ⅰ)求的表达式; (Ⅱ) 当,求函数的单调递增区间和零点.
已知二次函数的图象过点(0,-3),且的解集. (Ⅰ)求的解析式; (Ⅱ)求函数的最值.
若x满足,为使满足条件的的值(1)存在;(2)有且只有一个;(3)有两个不同的值;(4)有三个不同的值,分别求的取值范围.
已知函数. (1)求函数的最小正周期和最大值; (2)在给定的坐标系内,用五点作图法画出函数在一个周期内的图象.