设数列 A : a 1 , a 2 , … a N ( N ≥ ) .如果对小于 n ( 2 ≤ n ≤ N ) , 的每个正整数 k 都有 a k < a n 则称 n 是数列 A 的一个 " G 时刻" , 记 G ( A ) 是数列 A 的所有 " G 时刻" 组成的集合.
(1)对数列 A: - 2 , 2 , - 1 , 1 , 3 , 写出 G ( A ) 的所有元素;
(2)证明:若数列 A 中存在 a n 使得 a n > a 1 , 则 G ( A ) ≠ ∅ ;
(3)证明:若数列 A 满足 a n - a n - 1 ≤ ( n = 2 , 3 , … , N ) 则G(A)的元素个数小于 a N - a 1 ;
已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)若函数在[-,]上的最大值与最小值之和为,求实数的值.
已知数列中,对一切自然数,都有 且.求证:(1); (2)若表示数列的前项之和,则.
(本题满分14分)已知函数的图像过点(1,3),且对任意实数都成立,函数与的图像关于原点对称.(Ⅰ)求与的解析式;(Ⅱ)若在[-1,1]上是增函数,求实数λ的取值范围.
(本小题满分14分) 已知点是⊙:上的任意一点,过作垂直轴于,动点满足.(1)求动点的轨迹方程;(2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由.
(右图为一简单集合体,其底面ABCD为正方形,平面,,且="2" .(1)画出该几何体的三视图;(2)求四棱锥B-CEPD的体积;(3)求证:平面.