(本小题满分14分) 已知点是⊙:上的任意一点,过作垂直轴于,动点满足.(1)求动点的轨迹方程;(2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由.
(本小题满分12分) 如图,A、B分别是椭圆的公共左右顶点,P、Q分别位于椭圆和双曲线上且不同于A、B的两点,设直线AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4且k1+k2+k3+k4=0。 (1)求证:O、P、Q三点共线;(O为坐标原点) (2)设F1、F2分别是椭圆和双曲线的右焦点,已知PF1//QF2,求的值。
(本小题满分12分) 已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CE的中点。 (1)求证:AF⊥CD; (2)求直线AC与平面CBE所成角的大小。
(本小题满分12分) 已知函数 (1)当的单调区间; (2)若上的最小值为1,求实数a的取值范围;(其中e为自然对数的底数) (3)若上恒成立,求实数a的取值范围。
(本小题满分12分) 2009年我市城市建设取得最大进展的一年,正式拉开了从“两湖”时代走向“八里湖”时代的大幕。为了建设大九江的城市框架,市政府大力发展“八里湖”新区,现有甲乙两个项目工程待建,请三位专家独立评审。假设每位专家评审结果为“支持”或“不支持”的概率都是,每个项目每获得一位专家“支持”则加1分,“不支持”记为0分,令表示两个项目的得分总数。(1)求甲项目得1分乙项目得2分的概率; (2)求的数学期望E。
(本小题满分12分) 已知函数 (1)求函数的最小正周期及单调递增区间; (2)若关于x的方程内有实数解,求实数m的取值范围。