已知点 A(−2,0), B(2,0),动点 M( x, y)满足直线 AM与 BM的斜率之积为− 1 2 .记 M的轨迹为曲线 C.
(1)求 C的方程,并说明 C是什么曲线;
(2)过坐标原点的直线交 C于 P, Q两点,点 P在第一象限, PE⊥ x轴,垂足为 E,连结 QE并延长交 C于点 G.
(i)证明: △ PQG 是直角三角形;
(ii)求 △ PQG 面积的最大值.
(本小题满分12分)某用人单位招聘员工依次为自荐材料审查、笔试、面试共三轮考核.规定:只能通过前一轮考核后才能进入下一轮的考核,否则将被淘汰;三轮考核都通过才算通过.小王三轮考核通过的概率分别为,,,且各轮考核通过与否相互独立. (1)求小王通过该招聘考核的概率; (2)若小王通过第一轮考核,家长奖励人民币1200元;若小王通过第二轮考核,家长再奖励人民币1000元;若小王通过第三轮考核,家长再奖励人民币1400元.记小王得到奖励的金额为,求的分布列和数学期望.
(本小题满分12分) 在中,角的对边分别是,若. (1)求角的大小; (2)若,的面积为,求的值.
(本小题满分14分)已知二次函数,关于的不等式的解集为,(),设. (1)求的值; (2)R如何取值时,函数存在极值点,并求出极值点; (3)若,且,求证:N.
(本小题满分13分)已知椭圆的中心在坐标原点,两个焦点分别为,,点在椭圆上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且与交于点. (1) 求椭圆的方程; (2)是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.
(本小题满分12分)如图,在正三棱柱中,△是边长为的等边三角形,平面,,分别是,的中点. (1)求证:∥平面; (2)若为上的动点,当与平面所成最大角的正切为时,求平面与平面所成二面角(锐角)的余弦值.