设数列满足:①;②所有项;③.设集合,将集合中的元素的最大值记为.换句话说,是数列中满足不等式的所有项的项数的最大值.我们称数列为数列的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.(1)若数列的伴随数列为1,1,1,2,2,2,3,请写出数列;(2)设,求数列的伴随数列的前100之和;(3)若数列的前项和(其中常数),试求数列的伴随数列前项和.
【原创】(本小题满分12分)已知函数. (Ⅰ)求的最小正周期; (Ⅱ)求在上的最大值与最小值.
(本小题满分12分)设到定点的距离和它到直线距离的比是. (Ⅰ)求点的轨迹方程; (Ⅱ)为坐标原点,斜率为的直线过点,且与点的轨迹交于点,,若,求△的面积.
【原创】(本小题满分13分)已知函数,. (Ⅰ)若函数在定义域上是增函数,求a的取值范围; (Ⅱ)求的最大值.
【改编】(本小题满分13分)已知F1、F2分别为椭圆C:(a>b>0)的左、右焦点, 且离心率为,点在椭圆C上. (Ⅰ)求椭圆C的方程; (Ⅱ)是否存在斜率为k的直线与椭圆C交于不同的两点M、N,使直线与的倾斜角互补,且直线是否恒过定点,若存在,求出该定点的坐标;若不存在,说明理由.
(本小题满分12分)已知数列是等差数列,且. (Ⅰ)求数列的通项公式; (Ⅱ)若数列是首项为2,公比为2的等比数列,求数列的前项和.