已知分别是椭圆的左、右焦点,椭圆过点且与抛物线有一个公共的焦点.(1)求椭圆方程;(2)直线过椭圆的右焦点且斜率为与椭圆交于两点,求弦的长;(3)以第(2)题中的为边作一个等边三角形,求点的坐标.
(本小题满分10分)选修4-5:不等式选讲 已知,且,求证:≥8。
(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线C的极坐标方程是,直线的参数方程是。 (1)将曲线C的极坐标方程化为直角坐标方程; (2)设直线与轴的交点是M,N是曲线C上一动点,求的最大值。
(本小题满分10分)选修4-1:几何证明选讲 如图,圆O的半径OB垂直于直径AC,M为OA上一点,BM的延长线交圆O于N,过N点的切线交CA的延长线于P。 (1)求证:PM2=PA·PC (2)若圆O的半径为,OA=OM,求MN的长。
(本小题满分13分)已知函数. (1)若函数在上单调递增,求实数的取值范围. (2)记函数,若的最小值是,求函数的解析式.
(本小题满分12分)已知椭圆方程为斜率为的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴交于点M(0,m)。 (1)求m的取值范围; (2)求△OPQ面积的取值范围。