(本小题满分12分)已知椭圆方程为 斜率为的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴交于点M(0,m)。(1)求m的取值范围;(2)求△OPQ面积的取值范围。
(本小题12分) 某工厂组织工人参加上岗测试,每位测试者最多有三次机会,一旦某次测试通过,便可上岗工作,不再参加以后的测试;否则就一直测试到第三次为止。设每位工人每次测试通过的概率依次为0.2,0.5,0.5,每次测试相互独立。(1)求工人甲在这次上岗测试中参加考试次数为2、3的概率分别是多少?(2)若有4位工人参加这次测试,求至少有一人不能上岗的概率。
(本小题12分) =(), =,f(x)=①求f(x)图象对称中心坐标②若△ABC三边a、b、c满足b2=ac,且b边所对角为x,求x的范围及f(x)值域。
已知函数.(Ⅰ)当时,试判断的单调性并给予证明;(Ⅱ)若有两个极值点.(i) 求实数a的取值范围;(ii)证明:。 (注:是自然对数的底数)
已知点,是抛物线上相异两点,且满足.(Ⅰ)若的中垂线经过点,求直线的方程;(Ⅱ)若的中垂线交轴于点,求的面积的最大值及此时直线的方程.
如图,已知平面QBC与直线PA均垂直于所在平面,且PA=AB=AC.(Ⅰ)求证:PA∥平面QBC;(Ⅱ)若,求二面角Q-PB-A的余弦值。