请仔细阅读以下材料:已知是定义在上的单调递增函数.求证:命题“设,若,则”是真命题.证明:因为,由得.又因为是定义在上的单调递增函数,于是有. ①同理有. ②由①+ ②得.故,命题“设,若,则”是真命题.请针对以上阅读材料中的,解答以下问题:(1)试用命题的等价性证明:“设,若,则:”是真命题;(2)解关于的不等式(其中).
(本小题满分12分)已知数列的前项和,数列满足:. (1)试求的通项公式,并说明是否为等比数列; (2)求数列的前n项和; (3) 求的最小值.
(本小题满分12分) 如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点, 求证: AB⊥平面CDE; 平面CDE⊥平面ABC; 若G为△ADC的重心,试在线段AB上确定一点F,使得GF∥平面CDE.
(本小题满分12分)已知函数有极值,且曲线处的切线斜率为3. (1)求函数的解析式; (2)求在[-4,1]上的最大值和最小值
(本小题满分12分) 已知函数. (1)若为奇函数,求的值; (2)若在上恒大于0,求的取值范围.
(本小题满分12分) 已知=(,),=(,2),设=(1)求的最小正周期和单调递减区间; (2)设关于的方程=在[]有两个不相等的实数根,求的取值范围