已知四边形ACBE,AB交CE于D点,,BE2=DE-EC.(I)求证:;(II)求证:A、E、B、C四点共圆.
设向量,,.(1)若,求的值;(2)设函数,求的最大、最小值.
已知函数,,(Ⅰ)若,求函数的极值;(Ⅱ)若函数在上单调递减,求实数的取值范围;(Ⅲ)在函数的图象上是否存在不同的两点,使线段的中点的横坐标与直线的斜率之间满足?若存在,求出;若不存在,请说明理由.
已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且.(Ⅰ)求双曲线的方程;(Ⅱ)以双曲线的另一焦点为圆心的圆与直线相切,圆:.过点作互相垂直且分别与圆、圆相交的直线和,设被圆截得的弦长为,被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
知等差数列的公差大于0,且是方程的两根,数列的前项和为.(Ⅰ)求数列的通项公式;(Ⅱ)记,求证:;(Ⅲ)求数列的前项和.
已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=,O为AB的中点.(Ⅰ)求证:EO⊥平面ABCD;(Ⅱ)求点D到平面AEC的距离.