在直角坐标系 xOy 中,曲线 C 1 的参数方程为 ( t 为参数 ) .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线 C 2 的极坐标方程为 4 ρ cos θ - 16 ρ sin θ + 3 = 0 .
(1)当 k = 1 时, C 1 是什么曲线?
(2)当 k = 4 时,求 C 1 与 C 2 的公共点的直角坐标.
已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3), (1)求AB边所在的直线方程; (2)求AB边的高所在直线方程.
(本小题满分14分)若在定义域内存在实数,使得成立,则称函数有“飘移点”. (1)函数是否有“飘移点”?请说明理由; (2)证明函数在上有“飘移点”; (3)若函数在上有“飘移点”,求实数的取值范围.
(本小题满分13分)如图所示,在矩形中,已知,在上分别截取都等于,当取何值时,四边形的面积最大?并求出这个最大面积.
(本小题满分12分)已知是定义在R上的奇函数,且. (1)求的值; (2)用定义证明在上为增函数; (3)若对恒成立,求的取值范围.
(本小题满分12分)设函数. (1)画出函数的图象; (2)利用函数的图像求不等式的解集.