已知A={a1,a2,a3,a4,a5},B={a12,a22,a32,a42,a52}, ai∈N(i=1,2,3,4,5)设a1<a2<a3<a4<a5且A∩B={a1,a4},a1+a4=10,又A∪B元素之和为224,求:(1)a1,a4 (2)A
在平面直角坐标系中,已知定点A(-2,0)、B(2,0),异于A、B两点的动点P满足,其中k1、k2分别表示直线AP、BP的斜率. (Ⅰ)求动点P的轨迹E的方程; (Ⅱ)若N是直线x=2上异于点B的任意一点,直线AN与(I)中轨迹E交予点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),点C(1,0),求证:|CM|·|CN|为定值.
某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,用茎叶图表示出甲、乙两队运动员本次测试的跳高成绩(单位:cm,且均为整数),同时对全体运动员的成绩绘制了频率分布直方图.跳高成绩在185cm以上(包括185cm)定义为“优秀”,由于某些原因,茎叶图中乙队的部分数据丢失,但已知所有运动员中成绩在190cm以上(包括190cm)的只有两个人,且均在甲队. (Ⅰ)求甲、乙两队运动员的总人数a及乙队中成绩在[160,170)(单位:cm)内的运动员人数b; (Ⅱ)在甲、乙两队所有成绩在180cm以上的运动员中随机选取2人,已知至少有1人成绩为“优秀”, 求两人成绩均“优秀”的概率; (Ⅲ)在甲、乙两队中所有的成绩为“优秀”的运动员中随机选取2人参加省中学生运动会正式比赛, 求所选取运动员中来自甲队的人数X的分布列及期望.
如图,在直三棱柱中,,,异面直线与所成 的角为. (Ⅰ)求证:; (Ⅱ)设是的中点,求与平面所成角的正弦值.
设数列{an}是等差数列,数列{bn}的前n项和Sn满足且 (Ⅰ)求数列{an}和{bn}的通项公式: (Ⅱ)设Tn为数列{Sn}的前n项和,求Tn.
已知无穷数列中,、、、构成首项为2,公差为-2的等差数列,、、、,构成首项为,公比为的等比数列,其中,. (1)当,,时,求数列的通项公式; (2)若对任意的,都有成立. ①当时,求的值; ②记数列的前项和为.判断是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.