已知椭圆 C : x 2 25 + y 2 m 2 = 1 ( 0 < m < 5 ) 的离心率为 15 4 , A , B 分别为 C 的左、右顶点.
(1)求 C 的方程;
(2)若点 P 在 C 上,点 Q 在直线 x = 6 上,且 | BP | = | BQ | , BP ⊥ BQ ,求 △ APQ 的面积.
设函数与数列满足关系:(1) a1.>a, 其中a是方程的实根,(2) an+1=(nN+ ) ,如果的导数满足0<<1 (1)证明: an>a(2)试判断an与an+1的大小,并证明结论。
如图,有一块半椭圆形钢板,其半轴长为,短半轴长为,计划将此钢板切割成等腰梯形的形状,下底是半椭圆的短轴,上底的端点在椭圆上,记,梯形面积为. (1)求面积以为自变量的函数式,并写出其定义域; (2)求面积的最大值.
设集合A={2,4,6,8},B={1,3,5,7,9},今从A中取一个数作为十位数字,从B中取一个数作为个位数字,问: (1)能组成多少个不同的两位数? (2)能组成多少个十位数字小于个位数字的两位数? (3)能组成多少个能被3整除的两位数?
设函数设,试比较与的大小
已知函数,其中. (1)当时,求曲线在点处的切线方程; (2)当时,求函数的单调区间与极值.