(本小题满分13分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求的值及的表达式;(Ⅱ)隔热层修建多厚时,总费用达到最小,并求最小值.
(14分)已知函数⑴ 判断函数的单调性并用函数单调性定义加以证明;⑵ 当,若在上的值域是 ,求实数a的取值范围
(13分)有一批电脑原价2000元,甲、乙两个商店均有销售,甲商店按如下方法促销:在10台内(不含10台)买一台优惠2.5%,买两台优惠5%,买三台优惠7.5%……,依此类推,即多买一台,每台再优惠2.5个百分点(1%叫做一个百分点),10台后(含10台)每台1500元;乙商店一律原价的80%销售。某学校要买一批电脑,去哪家商店购买更合算?
(12分) 已知实数x满足不等式⑴ 求x的取值范围;⑵ 在⑴的条件下,求函数的最大值和最小值。
(12分) 设函数是奇函数。⑴ 求实数m的值;⑵ 若,求实数t的取值范围。
(12分) 已知函数⑴ 若对一切实数x恒成立,求实数a的取值范围。⑵ 求在区间上的最小值的表达式。