如图, 在棱长为 2 的正方体 ABCD - A 1 B 1 C 1 D 1 中, E , F 分别为棱 BC , CD 的中点.
(1) 求证: D 1 F ‖ A 1 E C 1 .
(2) 求直线 A C 1 与平面 A 1 E C 1 所成角的正弦值.
(3) 求二面角 A - A 1 C 1 - E 的正弦值.
已知、分别是的外接圆和内切圆;证明:过上的任意一点,都可作一个三角形,使得、分别是的外接圆和内切圆.
设的所有排列的集合为;,记,;求.(其中表示集合的元素个数).
在一个圆周上给定十二个红点;求的最小值,使得存在以红点为顶点的个三角形,满足:以红点为端点的每条弦,都是其中某个三角形的一条边.
设,;求证:.
在凸五边形中,已知,且四点共圆.证明:四点共圆的充分必要条件是.