如图,在平面直角坐标系中,抛物线 y = − x 2 + bx + c 交 x 轴于点 A 和 C ( 1 , 0 ) ,交 y 轴于点 B ( 0 , 3 ) ,抛物线的对称轴交 x 轴于点 E ,交抛物线于点 F .
(1)求抛物线的解析式;
(2)将线段 OE 绕着点 O 沿顺时针方向旋转得到线段 O E ' ,旋转角为 α ( 0 ° < α < 90 ° ) ,连接 AE ' , BE ' ,求 BE ' + 1 3 AE ' 的最小值;
(3) M 为平面直角坐标系中一点,在抛物线上是否存在一点 N ,使得以 A , B , M , N 为顶点的四边形为矩形?若存在,请写出点 N 的横坐标;若不存在,请说明理由.
如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y轴建立平面直角坐标系,点A(0, a),C(b,0)满足。 (1)则C点的坐标为__________;A点的坐标为__________. (2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.AC的中点D的坐标是(1,2),设运动时间为t(t>0)秒.问:是否存在这样的t,使,若存在,请求出t的值;若不存在,请说明理由. (3)点F是线段AC上一点,满足∠FOC=∠FCO, 点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H, 当点E在线段OA上运动的过程中,的值是否会发生变化,若不变,请求出它的值;若变化,请说明理由.
学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总的租车费用不超过2300元,求最省钱的租车方案.
为丰富学生课余生活,我校准备开设兴趣课堂。为了了解学生对绘画、书法、舞蹈、乐器这四个兴趣小组的喜爱情况,在全校进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息尚不完整),请根据图中提供的信息,解答下面的问题: (1)此次共调查了多少名同学? (2)将条形图补充完整,并计算扇形统计图中乐器部分的圆心角的度数; (3)如果我校共有1000名学生参加这4个课外兴趣小组,而每个教师最多只能辅导本组的25名学生,估计书法兴趣小组至少需要准备多少名教师?
为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件, B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.求购进A、B两种纪念品每件各需多少元?
在如图所示的正方形网格中,每个小正方形的边长为1,格点三 角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(,5),(,3).(1)请在网格平面内作出平面直角坐标系;(2)将△ABC平移得,已知A′(2,3),请在网格中作出,并写出点B′和C′的坐标:B′ 和C′__________.(3)△ABC的面积为__________.