在一次测量物体高度的数学实践活动中,小明从一条笔直公路上选择三盏高度相同的路灯进行测量.如图,他先在点 B 处安置测倾器,于点 A 处测得路灯 MN 顶端的仰角为 10 ° ,再沿 BN 方向前进10米,到达点 D 处,于点 C 处测得路灯 PQ 顶端的仰角为 27 ° .若测倾器的高度为1.2米,每相邻两根灯柱之间的距离相等,求路灯的高度(结果精确到0.1米).
(参考数据: sin 10 ° ≈ 0 . 17 , cos 10 ° ≈ 0 . 98 , tan 10 ° ≈ 0 . 18 , sin 27 ° = 0 . 45 , cos 27 ° ≈ 0 . 89 , tan 27 ° ≈ 0 . 51 )
如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E为上一点,连接ME,NE,NE交MQ于点F,且=EF•EN. (1)求证:QN=QF; (2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.
光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A种型号零件,可得报酬0.85元,每生产一件B种型号零件,可得报酬1.5元,下表记录的是工人小王的工作情况:
根据上表提供的信息,请回答如下问题: (1)小王每生产一件A种型号零件、每生产一件B种型号零件,分别需要多少分钟? (2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式; (3)如果生产两种型号零件的数目限制,那么小王该月的工资数目最多为多少?
课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图. 请你根据统计图,解答下列问题: (1)本次一共调查了多少名学生? (2)C类女生有名,D类男生有名,并将条形统计图补充完整; (3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.
如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.
如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.