4张相同的卡片上分别写有数字0、1、 - 2 、3,把卡片的背面朝上,洗匀后从中任意抽取1张,把卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样把卡片上的数字记录下来.
(1)第一次抽取的卡片上数字是负数的概率为 ;
(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)
(本题12分)如图,已知点A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点. (1)求此反比例函数的解析式和点B的坐标; (2)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.
(本题12分)已知二次函数的图象经过点(0,-3),且顶点坐标为(-1,-4). (1)求该二次函数的解析式; (2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.
本题10分)如图,△ADC的外接圆直径AB交CD于点E,已知∠C= 650,∠D=470,求∠CEB的度数.
(本题8分)已知等腰三角形ABC,如图. (1)用直尺和圆规作△ABC的外接圆; (2)设△ABC的外接圆的圆心为O,若∠BOC=1280, 求∠BAC的度数.
12分).如图,当x=2时,抛物线取得最小值-1,并且与y轴交于点C(0,3),与x轴交于点A,B(A在B的右边)。 (1)求抛物线的解析式 (2)D是线段AC的中点,E为线段AC上的一动点(不与A,C重合),过点E作y轴的平行线EF与抛物线交于点F。问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,请说明理由。 (3)在抛物线的对称轴上是否存在点P,使得△APD为等腰三角形?若存在,请直接写出点p的坐标;若不存在,请说明理由。