4张相同的卡片上分别写有数字0、1、 - 2 、3,把卡片的背面朝上,洗匀后从中任意抽取1张,把卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样把卡片上的数字记录下来.
(1)第一次抽取的卡片上数字是负数的概率为 ;
(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)
为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2. (1)求车架档AD的长; (2)求车座点E到车架档AB的距离. (结果精确到1 cm.参考数据: sin75°="0.966," cos75°=0.259,tan75°=3.732)
解不等式组,并把解集在数轴上表示出来.
已知:如图,在△ABC中,AB=AC,∠BAC=,且60°<<120°.P为△ABC内部一点,且PC=AC,∠PCA=120°—. (1)用含的代数式表示∠APC,得∠APC =______; (2)求证:∠BAP=∠PCB; (3)求∠PBC的度数.
(1)已知:如图1,在△ABC中,D、F分别是AB、CA上的两个定点,在BC上找一点E,使△DEF的周长最小,请作出相应图形并写出作法, (2)已知:如图2,在△ABC中,若在上一题的条件改为D是AB上一定点,在BC、 CA、上分别找一点E、F使△DEF的周长最小,请作出相应图形并写出作法 (3)已知:如图3,在△ABC中,是否存在D、E、F分别在AB、BC、CA,且 △DEF的周长最小,若存在请作出相应图形并写出作法,若不存在,请说明理由。
如图,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.