如图所示,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做格点, O 为平面直角坐标系的原点,矩形 OABC 的4个顶点均在格点上,连接对角线 OB .
(1)在平面直角坐标系内,以原点 O 为位似中心,把 ΔOAB 缩小,作出它的位似图形,并且使所作的位似图形与 ΔOAB 的相似比等于 1 2 ;
(2)将 ΔOAB 以 O 为旋转中心,逆时针旋转 90 ° ,得到△ O A 1 B 1 ,作出△ O A 1 B 1 ,并求,出线段 OB 旋转过程中所形成扇形的周长.
六•一儿童节,小文到公园游玩,看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积相等,比如:A、B、C是弯道MN上任三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等. 爱好数学的他建立了平面直角坐标系(如图).图中三块阴影部分的面积分别记为S1、S2、S3,并测得S2=6(单位:平方米),OG=GH=HI. (1)求S1和S3的值; (2)设T是弯道MN上的任一点,写出y关于x的函数关系式; (3)公园准备对区域MPOQN内部进行绿化改选,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?
如图,小明从点A出发,沿着坡度为为α的斜坡向上走了0.65千米到达点B,sinα=,然后又沿着坡度为i=1:4的斜坡向上走了1千米达到点C.问小明从A点到点C上升的高度CD是多少千米(结果保留根号)?
在平面直角坐标系xOy中,直线与y轴交于点A. (1)如图,直线与直线交于点B,与y轴交于点C,点B横坐标为. ①求点B的坐标及k的值; ②直线与直线与y轴所围成的△ABC的面积等于; (2)直线与x轴交于点E(,0),若,求k的取值范围.
在一只不透明的布袋中装有红球、黄球各若干个,这些球除颜色外都相同,均匀摇匀. (1)若布袋中有3个红球,1个黄球.从布袋中一次摸出2个球,计算“摸出的球恰是一红一黄”的概率(用“画树状图”或“列表”的方法写出计算过程); (2)若布袋中有3个红球,x个黄球. 请写出一个x的值,使得事件“从布袋中一次摸出4个球,都是黄球”是不可能的事件; (3)若布袋中有3个红球,4个黄球. 我们知道:“从袋中一次摸出4个球,至少有一个黄球”为必然事件. 请你仿照这个表述,设计一个必然事件:.
为了了解“通话时长”(“通话时长”指每次通话时间)的分布情况,小强收集了他家1000个“通话时长”数据,这些数据均不超过18(分钟).他从中随机抽取了若干个数据作为样本,统计结果如下表,并绘制了不完整的频数分布直方图.
根据表、图提供的信息,解答下面的问题: (1)a=,样本容量是; (2)求样本中“通话时长”不超过9分钟的频率:; (3)请估计小强家这1000次通话中“通话时长”超过15分钟的次数.