人字折叠梯完全打开后如图1所示, B , C 是折叠梯的两个着地点, D 是折叠梯最高级踏板的固定点.图2是它的示意图, AB = AC , BD = 140 cm , ∠ BAC = 40 ° ,求点 D 离地面的高度 DE .(结果精确到 0 . 1 cm ;参考数据 sin 70 ° ≈ 0 . 94 , cos 70 ° ≈ 0 . 34 , sin 20 ° ≈ 0 . 34 , cos 20 ° ≈ 0 . 94 )
如图,△ABC中,CD是边AB上的高,且.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.
如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.
如图,DE∥BC,EF∥CG,AD:AB=1:3,AE=3.(1)求EC的值;(2)求证:AD•AG=AF•AB.
解方程:(1)x(x-2)=x-2;(2)(x+8)(x+1)=-12.
如图,抛物线y=ax2+bx+c经过原点,与x轴相交于点E(8,0),抛物线的顶点A在第四象限,点A到x轴的距离AB=4,点P(m,0)在线段OB上,连结PA,将线段PA绕点P逆时针旋转90°得到线段PC,过点C作y轴的平行线交x轴于点G,交抛物线于点D,连结BC和AD.(1)求抛物线的解析式;(2)求点C的坐标(用含m的代数式表示);(3)当四边形ABCD是平行四边形时,求点P的坐标.